

Introduction

This study represents the analyses of Geological Survey of Canada open-file data for mercury (Hg) concentrations in lake and stream sediments at about **142,000** sampling locations.

The extent of stream or lake Hg transfer via sediments depends on:

• upland soil and stream bank erosion rates (Bagnato et al., 2009; Friske et al., 1995; Miller et al., 1998; Smith et al., 1999; Tenhulscher et al., 1992),

• geological processes that release Hg containing minerals (Bagnato et al., 2009; Coker et al., 1995; Gustin, 2003; Jebrak et al., 2002; Smith et al., 2008),

• geochemical correlations between Hg and mineral composition, and physical and chemical properties of water (pH, temperature, color, etc...) (Vaidya et al., 2000),

• transformation, mobilization and transportation of Hg from sediments to water and from water to sediments (Chadwick et al., 2006; Skyllberg 2006; Vaidya et al., 2000), and

• atmospheric deposition (Hermanson et al., 1998).

Purpose

The main objective of this study is to discern the hydro-geospatial context of Hg variations in lake and stream sediments by

- upland/lowland sampling spots,
- percentage of wet-area coverage per basin above the sampling locations, and
- geological substrates

Techniques

Digital elevation models (DEMs) were used to delineate:

- local flow channels, directions and accumulation, stream orders, and catchment areas by lake and stream sampling location
- uplands from lowlands, based on a cartographic depth-to-water index (DTW) o across Canada at 300 m resolution
 - o across specific sampling regions, at 10 m resolution

Results: Hg concentrations (ppb) in lake & stream sediments, by survey zones and upland/lowland delineation

-	Hg (ppb)				Hg (ppb) Lake			Hg (ppb) Stream				
Survay zone (number)	n	Mean	Min	Max	StdD	Std. Error	Upland	Lowland	Ratio*	Upland	Lowland H	Ratio*
Nunavut, Central	1,232	29	10	110	18	0.52	33	26	1.27			
British Columbia, East	3,972	35	10	2,380	65	1.03				36	35	1.02
Nunavut, North	2,118	44	10	150	20	0.44	45	43	1.04			
Manitoba, East	5,111	45	10	801	21	0.29	49	44	1.10			
Central Canada	31,523	55	5	1,560	33	0.19	58	51	1.15			
North West Territories, Central	1,298	57	10	295	36	0.99	60	50	1.20			
Yukon and BC, West of Anomaly	39,847	59	5	9,200	128	0.64	104	81	1.27	59	56	1.05
Ontario, ELA	1,954	80	11	1,047	46	1.05	87	74	1.18			
Labrador	20,549	82	8	900	57	0.40	87	80	1.09	33	27	1.21
New Brunswick	7,771	84	10	6,830	97	1.10	129	129	1.00	84	73	1.15
Yukon and Surrounding (Anomaly)	11,372	110	8	5,950	149	1.40	123	106	1.16	113	96	1.18
Ontario, Central	3,242	115	10	1,020	63	1.11	123	97	1.27			
Ontario, Sudbury British Columbia, Vancouver Island	9,157 2,882	126 165	10 10	5,000 9,400	101 492	1.05 9.17	133	119	1.12	42 170	42 138	1.00 1.24
Total	142.028	73	5	9,400	119	0.32	81	64	1.27	74	64	1.15

11/23/2009

Results: Re	gression analysis fo	or log ₁₀ (Hg co	oncentrations	(ppb)) in stre	eam sediment	Yukon
	6 7	01000		41 //		,
Variables	Coeff.	Std. Error	Std. Coeff.	t-Value	P-Value	R ²
Intercept	2.124	0.042	2.120	50.800	< 0.0001	
log10(Cu,ppb)	0.228	0.013	0.382	17.500	< 0.0001	0.480
log10(Ag,ppb)	0.254	0.019	0.264	13.500	< 0.0001	0.543
log10(LOI,%)	0.172	0.020	0.144	8.570	< 0.0001	0.561
Rock type: era ^a	0.145	0.013	0.211	11.100	<0.0001	0.594
(Aw/AB) ^{0.5}	-0.405	0.091	-0.074	-4.430	< 0.0001	0.604
	log _{in} (Hg.ppb)	e aleozoic				
	1	.5 Fitted 1	2 log ₁₀ (Hg, ppb)	2.5	3	

Summary

- Hg concentrations are, on average, slightly higher in lake than in stream sediments, but the latter are more variable than the former.
- High Hg concentration clusters occur near the central north-eastern border of Yukon, on Vancouver Island, in south-eastern of Ontario, and north-central New Brunswick.
- The Canada-wide upland/lowland delineation pattern reveals, on average, a consistent reduction in Hg concentrations from upland to lowland sediment sampling locations.
- Hg concentrations in Yukon stream sediments increase
 - o with increasing Cd, Cu, and Zn (ppm), loss on ignition (LOI,%), stream depth, and
 - \circ with decreasing stream order (from primary to quaternary), stream width and flow rate (R² = 0.491).
- The best-fitted regression results are further improved to 60% by adding wet-area percentage per basin and geological era as additional Hg-concentration predictor variables.

11/23/2009

References
Bagnato, E., Aiuppa, A., Parello, F., D'Alessandro, W., Allard, P., Calabrese, S., 2009. Mercury concentration, speciation and budget in volcanic aquifers: Italy and Guadeloupe (Lesser Antilles). J. Volcanol. Geotherm. Res. 179, 96-106.
Chadwick,S.P., Babiarz,C.L., Hurley,J.P., Armstrong,D.E., 2006. Influences of iron, manganese, and dissolved organic carbon on the hypolimnetic cycling of amended mercury. Sci. Total Environ. 368, 177-188.
Coker,W.B., Kettles,I.M., Shilts,W.W., 1995. Comparison of mercury concentrations in modern lake-sediments and glacial drift in the Canadian Shield in the region of Ottawa Kingston to Georgian Bay, Ontario, Canada. Water Air Soil Pollut. 80, 1025-1029.
Friske, P.W.B., Hombrook, E.H.W., 1991. Canada's National Geochemical Reconnaissance programme; Transactions of the Institution of Mining and Metallurgy. 100 (B), 47-56.
Gustin, M.S., 2003. Are mercury emissions from geologic sources significant? A status report. Sci. Total Environ. 304, 153-167.
Jebrak, M., Higueras, P.L., Marcoux, E., Lorenzo, S. 2002., Geology and geochemistry of high-grade, volcanic rock-hosted, mercury mineralisation in the Nuevo Entredicho deposit, Almaden district, Spain. Miner. Deposita. 37, 421-432.
Miller, J.R., Lechler, P.J., Desilets, M., 1998. The role of geomorphic processes in the transport and fate of mercury in the Carson River basin, west- central Nevada'. Environ. Geol. 33, 249-262.
Murphy, P.N.C Ogilvie, J., Arp, P.A., 2009. Topographical modeling of soil moisture conditions: a comparison and verification of two models. Eur. J. Soil Sci. 60, 94-1098.
NRCAN, 2007. Canada 3D - digital elevation model of the Canadian landmass.
Skyllberg,U. 2009. Sulphur chemistry controls both transport of mercury forms and methylation reactions in sediments, wetland and forest soils. I: Does forestry contribute to mercury in Swedish fish? Kungl. skogs och lantbruksakademiens tidskrift. Nummer 1, Argang 148.
Smith,J.N., Schafer,C.T., 1999. Sedimentation, bioturbation, and Hg uptake in the sediments of the estuary and Gulf of St. Lawrence. J. Limnol. Oceanol. 44, 207-219.
Smith,C.N., Kesler,S.E., Blum,J.D., Rytuba,J.J., 2008. Isotope geochemistry of mercury in source rocks, mineral deposits and spring deposits of the California Coast Ranges. USA. Earth Planet. Sci. Lett. 269, 398-406.
Tenhulscher, T.E.M., Mol, G.A.J., Luers, F., 1992. Release of metals from polluted sediments in a shallow lake - Quantifying resuspension. Hydrob. 235, 97-105.
Yukon Department of Environment. 2009. Database and GIS.

