

Mercury transport and transformation in a forest/wetland system

Pranesh Selvendiran

LimnoTech, Ann Arbor

Outline

- Background
- Research project
 - ➤ Approach and Methods
 - > Results
 - ➤ Conclusions
- Questions

Fate and Transport of Mercury in Wetlands

 Objective: To evaluate the sources, transformation, retention and transport of mercury in wetlands

Methods

- Monitoring interval
 - monthly (Aug 2004 July 2006)
- Stream and pore water
- Hydrology
 - flow monitored at watershed outlet
 - flow prorated at upstream locations
- Chemical analysis
 - THg & MeHg
 - ancillary (DOC, SO₄²⁻, NO₃⁻ pH, base cations)

Monitoring Approach

- Phase I (monthly)
 - Surface water monitoring
 - Ground water monitoring
 - Hydrology monitoring
 - Atmospheric deposition monitoring
- Phase II (diurnal/seasonal/annual)
 - Ambient air monitoring
 - Soil vapor monitoring
 - Vapor extraction from liquid phase
 - Soil sampling
 - Vegetation sampling

Conclusions

- Presence of small valley bottom wetlands in forested landscapes is ecologically significant due to the net increase in THg and MeHg and DOC transport to downstream aquatic ecosystems
- Distinctively high MeHg concentrations in surface waters draining wetlands were evident during warm summer months when biological activity, SO₄²⁻ reduction and hydrologic residence time were greatest.
- Subsurface production of MeHg within the wetlands was evident from the high levels of MeHg and % MeHg detected in wetland pore water
- Hydrologic connectivity is an important controller of Hg export in wetlands
- The storage of THg and MeHg in wetland soil is a large pool; wetland soil pool is a source of Hg species to stream water through DOC binding.
- Wetlands could potentially behave as a long-term source of THg, regardless of industrial Hg emission reductions, due to large storage of THg in wetland soil.
- Volatilization is an important component of Hg mass balance in wetlands

Questions?

