

EPEI ELECTRIC POWER RESEARCH INSTITUTE

### The Significance of Halogenoxides for Mercury Wet Deposition in the U.S.

Arnout Ter Schure, PhD Project Manager

#### 2009 Mercury Science & Policy Conference

Chicago, IL, November 17-18, 2009

#### **Presentation Outline**

- Mercury Wet Deposition in US
  - What is the main source of mercury deposition in the US?
    - Local Anthropogenic (HgCl<sub>2</sub>?)
    - Oxidation of Global Background Pool (HgO?, HgBr<sub>2</sub>, Hg?)
  - Current models use:
    - Hg + OH , Hg +  $O_3$
    - Product is HgO
  - BUT recent thermodynamic calculations suggest these reactions are less important: Oxidation mediated by halogen radicals (Br, I) is a possibility.
  - Test hypothesis in location with pronounced and continuous discrepancy: Gulf Coast



### What is the main source?

- 1. Most coal fired power plants are located ENE of Mississippi River.
- 2. Natural Hg sources are more widely distributed.



3. Conversely, measured He wet deposition fluxes  $(ng/m^2)$  and concentrations (ng/L) increase from NE to SE.



### **Presentation Outline**

- Mercury Wet Deposition in US
  - What is the main source of mercury deposition in the US ?
    - Local Anthropogenic (HgCl<sub>2</sub>?)
    - Oxidation of Global Background Pool (HgO?, HgBr<sub>2</sub>, Hg?)
  - Current models use:
    - Hg + OH , Hg +  $O_3$
    - Product is HgO
  - BUT recent thermodynamic calculations suggest these reactions are less important: Oxidation mediated by halogen radicals (Br, I) is a possibility.
  - Test hypothesis in location with pronounced discrepancy: Gulf Coast



#### **Laboratory Kinetics and Quantum Calculations**

|       |                                          | $\Delta H$ | k                            | τ      |
|-------|------------------------------------------|------------|------------------------------|--------|
|       |                                          | [kJ/mol]   | [cm <sup>3</sup> /molec/sec] | [days] |
| (R1)  | $Hg^{0} + O_{3} \rightarrow HgO + O_{2}$ | +93        | <3E-20                       | >392   |
| (R2)  | $Hg^{0} + OH \rightarrow HgO + H$        | +415       |                              |        |
| (R2a) | $Hg^0 + OH + M \rightarrow HgOH + M$     | -40        | <9E-14                       | >129   |
| (R3)  | $Hg^{0} + CI + M \rightarrow HgCI + M$   | <<0        | 5.4E-13                      | 1430   |
| (R4)  | $Hg^0 + Br + M \rightarrow HgBr + M$     | <<0        | 1.1E-12                      | 10     |
| (R4a) | $Hg^{o} + BrO \rightarrow HgO + Br$      | +40        | ??                           | ??     |
| (R5)  | $Hg^0 + I + M \rightarrow HgI + M$       | ??         | ??                           | ??     |
| (R5a) | $HgBr + I + M \rightarrow HgBrI + M$     | ??         | ??                           | ??     |



24

- Ozone unlikely; OH is likely of minor importance.
- The rate of mercury oxidation appears dominated by halogen chemistry

Lifetime estimates based on:  $[O_3] = 40 \text{ ppb}$ ;  $[OH] = [Br] = 10^6 \text{ molec/cm}^3$ ;  $[CI] = 1.5 \text{ } 10^4 \text{ molec/cm}^3$ 



### **Presentation Outline**

- Mercury Wet Deposition in US
  - What is the main source of mercury deposition in the US?
    - Local Anthropogenic (HgCl<sub>2</sub>?)
    - Oxidation of Global Background Pool (HgO?, HgBr<sub>2</sub>, Hg?)
  - Current models use:
    - Hg + OH , Hg +  $O_3$
    - Product is HgO
  - BUT recent thermodynamic calculations suggest these reactions are less important: Oxidation mediated by halogen radicals (Br, I) is a possibility.
  - Test hypothesis in location with pronounced and continuous discrepancy: Gulf Coast



© 2009 Electric Power Research Institute, Inc. All rights reserved.

## **Coastal Atmospheric Halogen Oxides**



- What halogen species are present in the coastal environment?
- What are the background concentrations of halogen oxides?
- Do halogen oxides correlate with RGM, and wet deposition?



### Halogen data

| Species                                                        | Elevated NO <sub>x</sub><br>(morning, ~5 ppb) | Low NO <sub>x</sub><br>(afternoon, ~0.2 ppb) |
|----------------------------------------------------------------|-----------------------------------------------|----------------------------------------------|
| Br                                                             | 0.1 ppt                                       | 0.1 ppt                                      |
| BrO                                                            | 1 ppt (<5 ppt)                                | 1 ppt (<5ppt)                                |
| IO                                                             | 1 ppt (<2 ppt)                                | 1 ppt (<2 ppt)                               |
| O <sub>3</sub>                                                 | 30 ppb                                        | 40 ppb                                       |
| NO                                                             | 2 ppb                                         | 0.15 ppb                                     |
| NO <sub>2</sub>                                                | 3 ppb                                         | 0.7 ppb                                      |
| HO <sub>2</sub>                                                | 10 ppt                                        | 100 ppt                                      |
| НСНО                                                           | 1.0 ppb                                       | 1.5 ppb                                      |
| СНОСНО                                                         | 150 ppt                                       | 300 ppt                                      |
| 109 Electric Power Research Institute Inc. All rights reserved | 8                                             |                                              |

8



### **RGM vs Windspeed**



Combination of photochemical and meteorological (wind speed and wind direction) factors are at the core to explain events of elevated RGM (> 20 pg m-3) levels at OLF.



### **Summary Results Inland Station**

- BrO not detect unequivocally; an upper limit of 1-4ppt from all data is estimated.
- IO present in small amounts: 0.5-1.5ppt, depending season.
- Glyoxal ( $C_2H_2O_2$ ) also present: 0.2ppb.
- Formaldehyde (CH<sub>2</sub>O) episodically detected:  $\sim$ 1.0 ppb.
- All constituents mainly detected at low altitudes (<2.5° above the horizon)
- Box model: >99% of chemically active forms of bromine are converted into inert species (HBr) within a minute and cannot survive transport from the coast to OLF.



#### Higher Levels of IO at New coastal site



EPCI ELECTRIC POWER RESEARCH INSTITUTE

### Implications



FIGURE 1. Rate coefficients calculated using RRKM theory, plotted as a function of temperature in Kelvin (T/K) for the recombination of Hg with Br, I, and OH and of HgBr with Br (solid lines, left-hand ordinate); and for the thermal dissociation of HgBr, HgI, and HgOH (broken lines, right-hand ordinate).

# Calvert & Lindberg 2004. Atmos. Environ. 38, 5105–5116. Indirect effect → important

| (b) Reaction of HgBr radicals<br>HgBr Reaction | Rate (molecule $\text{cm}^{-3} \text{ s}^{-1}$ ) | % of total HgBr reaction with X |
|------------------------------------------------|--------------------------------------------------|---------------------------------|
| $HgBr \rightarrow Hg + Br$                     | 1.09                                             | -0.3                            |
| $HgBr + OBr \rightarrow BrHgOBr$               | $1.84 \times 10^{2}$                             | 76.4                            |
| $(BrHgOBr + hv \rightarrow Br + OHgBr)$        | $(1.50 \times 10^2)$                             | 2.7                             |
| $HgBr + Br \rightarrow BrHgBr$                 | 6.62                                             |                                 |
| $HgBr + Cl \rightarrow ClHgBr$                 | $3.8 \times 10^{-4}$                             | $3.8 \times 10^{-4}$            |
| $HgBr + I \rightarrow IHgBr$                   | 7.6                                              | 3.2                             |
| $HgBr + OH \rightarrow HOHgBr$                 | 1.16                                             | 0.5                             |
| $HgBr + OCl \rightarrow BrHgOCl$               | 3.61                                             | 1.5                             |
| $(BrHgOCl \rightarrow BrHgO + Cl)$             | (7.39)                                           |                                 |
| $HgBr + OI \rightarrow BrHgOI$                 | $3.82 \times 10^{1}$                             | 15.8                            |
| $HgBr + HgBr \rightarrow Hg_2Br_2$             | $8.42 \times 10^{-4}$                            | $7.0 \times 10^{-4}$            |
|                                                |                                                  |                                 |



ELECTRIC POWER

**RESEARCH INSTITUTE** 

#### **Halogen Measurements around the Globe**



EPEI ELECTRIC POWER RESEARCH INSTITUTE

### Halogen Chemistry in the atmosphere



- Oxidant levels determine the rate of mercury oxidation
- Competing NOx and HOx reactions to form inert reservoir species



### **Boundary Layer vs. Free Troposphere as Source for RGM?**

---·Hg⁰

100

80

60

40 20

0

-20

250 200

150

100

50

0 -50

-100

60

40

20

-20

-40

RGM (pg/m<sup>3</sup>)

DR

RGM (pg/m<sup>3</sup>)

RGM (pg/m<sup>3</sup>)

- RGM





Weiss Penzias et al. (2009), JGR, 114, D14302 Obrist et al. (2008), pers. comm.

5/29 6/6 6/14 6/22 6/30 7/8 7/16 7/24 8/1 8/9 8/17 8/25 Date, 2007



> 75th percentile

< 25th percentile

3.5

3.0

2.5 (ng/m

2.0

1.5

1.0

3.0

2.0

1.5

1.0

4.0

3.5

2.5

1.0

0.5

Ę,

Ч<sup>о</sup> 2.5

(ng/m<sup>3</sup>)

Ч, 3.0

(ng/m³ 2.0 1.5

### **RGM diurnal cycle over the open ocean**



- Diurnal cycle is not explained by OH chemistry
- Halogen chemistry is needed to predict the observed dirunal cycle

Holmes et al. 2009, Atmos. Environ.



### **GOME and SCIAMACHY Satellite Data of BrO**



## **Summary, Implications and Conclusions**

- Halogen chemistry improves fit between models and observations
  - Half life Hg<sup>0</sup>
  - RGM's diurnal cycle (at least over the open ocean).
- Halogenoxides detected world wide in boundary layer.
- Halogens may play significant role in Hg oxidation along the Gulf Coast based on current observations.
- Satellites shows elevated BrO levels during spring time at higher latitudes (free troposphere); incl. The Great Lakes.
- Free troposphere important RGM pool and subsidence events can bring RGM to the surface.
- Currently no halogenoxide measurements in boundary layer above and around the great lakes.





### **Together...Shaping the Future of Electricity**



#### **Precipitation driven ? Reality check**



© 2009 Electric Power Research Institute, Inc. All rights reserved.